
API Quick Start Guide

Table of contents
Table of contents 2

Introduction 3

Prerequisites 3

Authentication 3

TokenNotes 4

ExecutingQueries 5

Postman 5

Collection 6

Documentation 6

Setting up environment 7

RunningQueries 8

Queries 9

Notes on the requests 11

Query operators 11

Aggregations 11

Pagination 12

Common errors 13

Authentication 13

Query 14

Server Error 15

Explorer 16

Reporting issues 16

intelligencia.ai

http://intelligencia.ai

Introduction
Welcome to Intelligencia’s API. In this document youwill find a quick start guide for our GraphQL API. A

detailed list of available operations, types, and fields can be found in our documentation:

https://docs.intelligencia.ai.

Contact us with questions, feedback or improvement suggestions: support@intelligencia.ai

Prerequisites
Before you can start experimenting with the API pleasemake sure that you have received the following

from us:

- API URL/Endpoint

- AUTHURL/Endpoint

- Client ID

- Client Secret

- Postman Collection

API URL/Endpoint, AUTHURL/Endpoint, Client ID, Client Secret are necessary to start working.

Intelligencia’s API is based on GraphQL; GraphQL specifications can be found here:

https://spec.graphql.org/

Authentication
To be able to use any of the API Operations, first you need to authenticate and generate an access token

(JWT). To do so, perform a POST request against the authentication url which you have received. The

request content typemust be x-www-form-urlencoded, and the request bodymust include the

following fields:

● grant_type=client_credentials

● client_id as provided by intelligencia

● client_secret as provided by Intelligencia

Below you can see a cURL example (A ready to use example exists in the Postman collection as well).

curl --location --request POST auth_url \

--header 'Content-Type: application/x-www-form-urlencoded' \

--data-urlencode 'grant_type=client_credentials' \

--data-urlencode 'client_id=client_id' \

--data-urlencode 'client_secret=client_secret'

intelligencia.ai

https://docs.intelligencia.ai
mailto:support@intelligencia.ai
http://intelligencia.ai

When everything is correct, performing this request will result in a JSON response with a 200 status

code. The response will include, among other information, a key value pair with the access token

(access_token). Example response:

{"access_token":"some_access_token","expires_in":1800,"refresh_expires_in":3600,

"refresh_token":"some_refresh_token","token_type":"bearer","not-before-policy":0,

"session_state":"de223b60-7d0d-42ae-bffc-d3f44cdc84a6","scope":"profile email"}

This tokenmust be used in the operations youwant to perform against the API as an Authorization

bearer request header. Below you can see a cURL example (requesting action types for the drug

Nivolumab)

curl --location --request POST api_url \

--header 'Authorization: Bearer some_access_token' \

--header 'Content-Type: application/json' \

--data-raw '{"query":"query MyQuery($name: String) {\n api_drug(where: {preferred_name: {_eq:

$name}}) {\n action_types\n }\n}\n","variables":{"name":"Nivolumab"}}'

TokenNotes
- Please keep inmind that the token has a specific time to live (TTL) and this can be found in the

authentication response in the field expires_in (number is in seconds). After the token expires,

you should refresh it by simply following the same authentication process.

- Note that If you use an expired token and perform an operation, the operation will result in a

status code 200 and the error message will appear in the body.

{

"errors": [

{

"extensions": {

"path": "$",

"code": "invalid-jwt"

},

"message": "Could not verify JWT: JWTExpired"

}

]

}

intelligencia.ai

http://intelligencia.ai

Executing Queries
Assuming you have created the token, you can now execute any GraphQL query against the API. Consult

the API documentation on how to shape your queries, and check the provided Postman collection for

examples. Below you can see a simple cURL example for requesting data for the drugs with a specific

name or synonym.

curl --location --request POST 'api_url' \

--header 'Authorization: Bearer token' \

--header 'Content-Type: application/json' \

--data-raw '{"query":"query MyQuery($name: String, $synonym: jsonb) {\n api_drug(where: \n {\n

_or: [\n {synonyms: {_contains: $synonym}},\n {preferred_name: {_eq: $name}}\n]\n

}) {\n drug_id\n action_types\n genes\n mechanism_of_action\n modalities\n

biological_pathways\n preferred_name\n synonyms\n targets\n protein_class\n

}\n}\n","variables":{"name":"Cisplatin","synonym":[{"name":"ONO-4538"}]}}'

The abovewill generate a response similar to:

{"data":{"api_drug":[{"drug_id":4670,"action_types":[{"name": "Antagonist"}],"genes":[{"name":

"PDCD1"}],"mechanism_of_action":[{"name": "Programmed cell death protein 1

Antagonist"}],"modalities":[{"name": "Monoclonal antibody", "parent":

"Antibody"}],"biological_pathways":[{"name": "Adaptive Immune System"}, {"name": "Costimulation by

the CD28 family"}, {"name": "Immune System"}, {"name": "PD-1

signaling"}],"preferred_name":"Nivolumab","synonyms":[{"name": "NIVOLUMAB [Injectable/Intravenous;

Injectable/Subcutaneous; Injectable/Intraperitoneal; Injectable/Intramuscular]"}, {"name":

"ONO-0123"},],"targets":[{"name": "Programmed cell death protein 1"}],"protein_class":[{"name":

"Receptor"}]}, {"drug_id":1588,"action_types":[{"name": "Cross-Linking

Agent"}],"genes":null,"mechanism_of_action":[{"name": "DNA Cross-Linking

Agent"}],"modalities":[{"name": "Other small molecule", "parent": "Small

molecule"}],"biological_pathways":null,"preferred_name":"Cisplatin","synonyms":[{"name":

"Abiplatin"}],"targets":[{"name": "DNA"}],"protein_class":null}]}}

Postman
This section is focused on utilizing Postman in order to interact with the API. Postman is an API tool - an

HTTP client essentially -, which allows setting up an environment, sharing request examples andmore.

You can findmore info on Postman’s website (https://www.postman.com), you can download it from

here: https://www.postman.com/downloads/, or use the web application.

intelligencia.ai

http://intelligencia.ai

Collection
By now you should have received from us a link to Intelligencia’s Postman collection. Please note that

we are constantly improving our Postman collection, thus youmay find differences between the actual

collection and the screenshots presented later in this document regarding the collection itself (e.g

number of requests shown).

The provided Postman collection includes examples for Authentication andOperations (queries). You

need to create a Postman account in order to work with it.

Documentation
You can access collections’ documentation via clicking on the three dots next to the collection name and

selecting ViewDocumentation.

intelligencia.ai

http://intelligencia.ai

There youwill find some notes on how some of the queries work andwhat is the logic behind some of

them.

Setting up environment
Before you start executing any action in Postman, you need to set up your environment. In the upper

right corner you should see:

Click on the eye icon and you should see some predefined variable names under the globals sub section.
intelligencia.ai

http://intelligencia.ai

By clicking on the Edit button you are able to change the values of those variables. Fill in the

CURRENT_VALUE of api_url, auth_url, cliend_id, and client_secret variables with the information you

have received. The value of “intelligencia_token” should be filled with the response of the auth

endpoint. (It is also filled in automatically if you use the sample auth request).

RunningQueries
If you completed the previous step successfully you are now able to execute actions via Postman. The

first step for this should always be to authenticate. Go to the Auth directory and execute the Service

account token request.

This will perform a POST request against the Auth url and if the request is successful it will also set up

the returned token as intelligencia_token in the global environment variables of postman. You can see

how this works if you go to this request’s Tests section.

intelligencia.ai

http://intelligencia.ai

If for some reason you have chosen to create your own environment with the variables discussed earlier,

this should bemodified as shown below in order to set the variable in the respective environment.

Queries

With the token generated you are able now to execute any of the given query examples, or prepare your

own queries. For each given query example youwill also find an example request/response within the

collection. Click to the arrow next to the example name and then you can access the example

request/response.

intelligencia.ai

http://intelligencia.ai

For instance, above you can see that for the Program by id request there is an example request/response

for the program id 19129.

To perform any of the given queries, just select them from the directory list and click the Send button

from the bar on the right.

This will return the relevant response to the lower part of the Postman application.

intelligencia.ai

http://intelligencia.ai

Notes on the requests

- You should always pick GraphQL as the type of the request in Postman

- All the requests are performed using the POSTmethod

- Note that the erroneous responses will return status code 200 and they will include in the body

of the response a key named errors and a value with an array of those error descriptions. See the

“Common Errors” section for more details.

- Most of the requests include some variable as you can see in the screenshot earlier. Feel free to

play aroundwith the variable values or the variables themselves to get acquainted with how

they work. Although if you add a new variable make sure that you add it in the GraphQL variable

object as well along and in the GraphQL query declaration.

Query operators

Above you saw an example of equality checking for the program id in the where clause. It is important to

be aware of the type of the field onwhich youwant to perform filtering. Each of the types has its own

operators (several of them intersect), and those are available in the documentation. For example, to see

how to query String fields check the String_comparison_exp, for citext the citext_comparison_exp, for

jsonb the jsonb_comparison_exp in the https://docs.intelligencia.ai/api/index.html.

If youwish to check for some field’s/object’s existence use the _is_null (set to true or false

accordingly).

Aggregations

Aggregations are types that allow the user to perform simple aggregations (count, min, max) against a

type. The naming convention to use this type is api_type_aggregation.

intelligencia.ai

https://docs.intelligencia.ai/api/index.html
http://intelligencia.ai

Youwill find several examples on how to use them in the aggregation directory of the Postman

collection. The counts are extremely useful when you are consuming paginated results in order to know

howmany requests you should perform.

Aggregations are enabled for the core types of the API (api_program, api_trial, api_drug, etc).

Pagination

The operators limit and offset are used for pagination. Limit specifies the number of rows to retain from

the result set and offset determines which slice to retain from the results. There are specific limits set to

the types exposed from the API. Please check the API documentation for default limits applied per type.

These limits will allow the consumer to get the relevant information for one type without forcing him to

use nested limits and offsets and also enable good experience by securing good response times.

Limit and offset, as mentioned, are the operators one should use to create paginated responses but it is

always needed to use the order_by operator as well. For most of the time you can use the id field (field

name convention: type_id). For benchmarks, where no id exists, it is recommended to use order_by with
indication and/or metric. In the Postman collection you can find examples for both cases (using an id

field or using other fields) in the relevant directory.

You can also find examples on how to use aggregation and normal queries in the same request.

intelligencia.ai

http://intelligencia.ai

Common errors
In this section wewill present some of the common errors youmay encounter while working with the

API along with suggestions on how to tackle them.

Authentication

Authentication requests will respondwith 4xx status codes if something is wrongwith the request.

- Attempting authentication with erroneous client id
{

"error": "unauthorized_client",

"error_description": "INVALID_CREDENTIALS: Invalid client credentials"

}

- Attempting authentication with erroneous client secret
{

"error": "unauthorized_client",

"error_description": "Invalid client secret"

}

For both cases pleasemake sure that you are using the correct credentials provided from us.

intelligencia.ai

http://intelligencia.ai

Query

Queries typically will return a response with a 200 status code evenwhen they are erroneous.We

highly recommend that you always check that the response does not contain a key named “errors”. Some

common errors youmay encounter are:

- Performing a request with an expired token. Response:
{

"errors": [

{

"extensions": {

"path": "$",

"code": "invalid-jwt"

},

"message": "Could not verify JWT: JWTExpired"

}

]

}

In such a case please generate a new access token to use in the following requests.

- Requesting for a field that does not exist in the specific type e.g fieldmy_trial in api_program type.
{

"errors": [

{

"extensions": {

"path": "$.selectionSet.api_program.selectionSet.my_trial",

"code": "validation-failed"

},

"message": "field \"my_trial\" not found in type: 'api_program'"

}

]

}

In this scenario make sure that the list of fields you are requesting for the particular type is valid.

Consult the documentation for this. If the field exists in documentation and there are nomistakes

in your request contact us.

- Requesting for a type that does not exist e.g api_benchmarkz
{

intelligencia.ai

http://intelligencia.ai

"errors": [

{

"extensions": {

"path": "$.selectionSet.api_benchmarkz",

"code": "validation-failed"

},

"message": "field \"api_benchmarkz\" not found in type: 'query_root'"

}

]

}

In this scenario make sure that the type you are requesting is valid. Consult the documentation

for this. If the type exists in documentation and there are nomistakes in your request, contact us.

- Requesting against an endpoint that does not exist e.g api_url/v1/graphql/programs
{

"path": "$",

"error": "resource does not exist",

"code": "not-found"

}

In this casemake sure that you are performing the request against the correct endpoint.

Server Error

For any request that will result in a status code 5xx (e.g Internal Server Error) please follow the next

steps

- Retry after a couple of minutes

- If the problem persists contact us in support@intelligencia.ai

Explorer
This section introduces explorer, a tool that allows direct interaction with our API and the underlying

entities, which you can access at https://explorer.intelligencia.ai/.
intelligencia.ai

mailto:support@intelligencia.ai
https://explorer.intelligencia.ai/
http://intelligencia.ai

The tool is based on the open-source GraphiQL explorer (https://github.com/graphql/graphiql).

It can be used to create queries by clicking on the desired entities and selecting the fields of interest.

In order to use it, you need to provide your client credentials (client id and client secret in their

respective fields) and authenticate. After authenticating, all available entities will appear on the left side

of the page.

From this point on, simply point and click on the desired entities, fields, operators, and arguments to

explore the schema and generate queries in the query editor section. After generating a query, press the

“Execute Query” button (or press Ctrl-Enter) to see the resulting data.

Reporting issues
If youwish to report an issue regarding Intelligencia’s API please contact support@intelligencia.ai and in

yourmail always include the request, the response (where applicable) -ideally both in their typical

format (JSON)-, and the timestamp of the issue along with a short description.

intelligencia.ai

https://github.com/graphql/graphiql
mailto:support@intelligencia.ai
http://intelligencia.ai

